חATIBIA UחIVERSITY
of SCIEחCE AחD TECHחOLOGY
FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES
SCHOOL OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DR. NA CHERE
MODERATOR:	DR. DSI IIYAMBO

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions in the booklet provided. |
| 2. Show clearly all the steps used in the calculations. |
| 3. All written work must be done in blue or black ink and sketches must |
| be done in pencil. |

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

QUESTION 1 [6]

1.1. If the nullity of the linear transformation $T: P_{n} \rightarrow M_{m n}$ is 3 , then determine the rank of T. [3]
1.2. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.

QUESTION 2 [16]

Determine whether each of the following mappings is linear or not.
2.1. $\mathrm{T}: \mathcal{F} \rightarrow \mathcal{F}$ defined by $\mathrm{T}(\mathrm{f})=(\mathrm{f}(\mathrm{x}))^{2}$, where \mathcal{F} is the vector space of functions on \mathbb{R}.
2.2. $T: M_{n n} \rightarrow M_{n n}$ defined by $T(A)=A C-C A$, where C is a fixed $n \times n$ matrix.

QUESTION 3 [11]

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$. Find $T\left[\begin{array}{l}a \\ b\end{array}\right]$ and use it to determine $T\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

QUESTION 4 [8]

Let \mathcal{F} be the vector space of functions with basis $\mathrm{S}=\left\{\operatorname{sint}\right.$, cost, $\left.\mathrm{e}^{-2 \mathrm{t}}\right\}$, and let $\mathrm{D}: \mathcal{F} \rightarrow \mathcal{F}$ be the differential operator defined by $D(f(t))=f^{\prime}(t)$. Determine the matrix $[D]_{S}$ representing D in the basis S .

QUESTION 5 [11]

Let $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by $L\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3}+x_{4} \\ 2 x_{1}-2 x_{2}+3 x_{3}+4 x_{4} \\ 3 x_{1}-3 x_{2}+4 x_{3}+5 x_{4}\end{array}\right]$.
Find the basis and the dimension of the image of L .

QUESTION 6 [11]

Consider the bases $\mathrm{B}=\left\{1+\mathrm{x}+\mathrm{x}^{2}, \mathrm{x}+\mathrm{x}^{2}, \mathrm{x}^{2}\right\}$ and $\mathrm{C}=\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ of P_{2}.
6.1. Find the change of basis matrix $P_{B \leftarrow C}$ from C to B.
6.2. Use the result in part (6.1) to compute $[p(x)]_{B}$ where $p(x)=2+x-3 x^{2}$.

QUESTION 7 [26]

Consider $A=\left[\begin{array}{ccc}4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5\end{array}\right]$.
7.1. Write down the characteristic polynomial $P(\lambda)$ of A and use this to find the eigenvalues of A. [6]
7.2. Find the eigenspaces corresponding to the eigenvalues of A.
7.3. Is A diagonalizable ? If so, find an invertible matrix P that diagonalizes A.

QUESTION 8 [11]

Find an orthogonal change of variables that eliminates the cross-product term in the quadratic form $\mathrm{q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=3 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{3}^{2}+4 \mathrm{x}_{1} \mathrm{x}_{2}$ and express q in terms of the new variables.

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER

